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Abstract

The paper presents a modified Oberst beam technique to evaluate the complex Young’s modulus of non-stiff materials.

Unconstrained layer theories and non-parametric complex modulus identification methods used for stiff materials form the

basis for the method. The proposed approach has several advantages over the standard Oberst beam technique. In

particular, the layer properties can be evaluated at any frequency, and the base beam need not be completely covered with

the layer material. In addition, the proposed method does not require that the complex modulus vs. frequency curve for the

base beam should have a flat area near analyzed resonance frequencies in order to yield accurate results. The experiments

conducted on a styrene–butadiene rubber (SBR) sample using a polymethyl methacrylate (PMMA) base beam produced

good results. Uncertainty analysis shows that the measurement accuracy can be improved by increasing the modulus

magnitude ratio between the layer material and the base beam material, or the thickness ratio between the layer and

base beam.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Since the 1950s, various experimental techniques have been developed to determine the complex Young’s
modulus of viscoelastic solids [1–9]. Many of these methods have utilized tests involving vibrating beams
because of their simplicity in both theory and experimental setup. The conventional vibrating-beam techniques
either exploit the modal characteristics of the beams, or are based on the propagating wave model. However,
the former group of methods can only evaluate the complex modulus at resonance frequencies and, to obtain
accurate results, the damping must be small. Moreover, the conventional methods depend on specific
boundary conditions that might not be easy to achieve in practice, especially for the methods utilizing
propagating wave theory.

Recently several complex modulus measurement techniques have been proposed to overcome these
disadvantages. These techniques and their associated analysis are non-parametric in the sense that the complex
modulus identification process does not rely on boundary conditions. Based on the propagating wave model,
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.02.028

ing author. Tel.: +1480 965 3668.

ess: Yabin.Liao@asu.edu (Y. Liao).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.02.028
mailto:Yabin.Liao@asu.edu


ARTICLE IN PRESS
Y. Liao, V. Wells / Journal of Sound and Vibration 316 (2008) 87–10088
they can continuously measure the complex modulus in a wide frequency range not restricted to resonance
frequencies, and they do not depend on boundary conditions as long as the beam model assumptions are
satisfied.

Hull and Hurdis [10] showed that the complex modulus could be exactly determined from five transfer
functions measured at evenly spaced locations on the test beam. Hillström, Mossberg and Lundberg proposed
a complex modulus estimation method using least squares [11]. The least squares (LS) method first assumes a
tentative wavenumber, uses the classical LS algorithm to reconstruct an optimized wave field, and calculates
the mean square error between the optimized and measured wave fields. Then the process is repeated for new
wavenumbers until the mean square error is minimized and the corresponding wavenumber is taken as the
identified wavenumber, from which the complex modulus is calculated.

More recently, Liao and Wells [12] developed an estimation method using wave coefficients. Based on the
propagating wave model of uniform beams, the Wave Coefficients (COE) method seeks a wavenumber that
forces the measurement points to have, as close as possible, the same wave coefficients. The COE method
follows a procedure similar to that of the LS method: first a tentative wavenumber is assumed; and then sets of
wave coefficients are calculated from different combinations of wave field measurements on the test beam, and
the error among these sets of wave coefficients is computed; the process then uses an optimization technique to
find the wavenumber that minimizes the wave coefficient error. The complex modulus can then be calculated
from the identified wavenumber.

Liao and Wells applied the COE and LS methods to stiff materials such as aluminum and polymethyl
methacrylate (PMMA). A laser vibrometer was used to obtain accurate vibration velocity measurements on
the beam. The results are in good agreement with those obtained by more conventional methods and with
those previously published over most of the frequencies of interest, 30–800Hz.

However, if the test material is not stiff enough to support itself, it cannot be formed into a beam, and the
complex modulus estimation methods cannot be directly applied. Most practical damping materials fall into
the classification of ‘‘non-stiff’’ [2,5,13]. Layer theories have been developed to indirectly measure properties of
damping-type materials [3,5,13–16]: the soft material layer can be coated on a stiff base beam (as in an
unconstrained layer configuration) or be sandwiched between stiff materials (as in a constrained layer
configuration). The effective complex modulus of the composite beam is estimated using the complex modulus
measurement techniques for stiff materials, and finally the soft material properties can be extracted from the
effective properties utilizing the layer theory.

The most well known of the unconstrained-layer-based methods is the standard Oberst beam technique
[1,5,13,15], which is based on the Oberst equation [15] for unconstrained layer systems. Since it uses
conventional modal testing to determine the complex modulus of the stiff base beam and the effective complex
modulus of the composite beam, it is subject to the same restrictions as the conventional complex modulus
measurement techniques, that is, the layer properties can only be evaluated at resonance frequencies, and the
layer material must completely cover one surface of the base beam.

In addition to the above limitations, it is also necessary that the complex modulus vs. frequency function for
the base beam should have minimal slope near analyzed resonance frequencies. This point is illustrated in
Fig. 1, which shows a fit curve from actual storage modulus measurements of PMMA. For discussion
purposes, assume f01 and f02 are two measured resonance frequencies of the base PMMA beam, and f1 and f2
are the resonance frequencies of the composite beam with coated damping layers. As will be discussed in more
detail in Section 2, the standard technique estimates the complex modulus of the base beam at resonance
frequency, f01. The method then uses the beam properties at this frequency to evaluate the complex modulus of
the layer at its natural frequency f1. A large variation in complex modulus between f01 and f1 leads to large
errors in the layer property extraction. On the other hand, if the complex modulus curve between base and
composite beam resonance frequencies has zero or near-zero slope, as between f02 and f2, using the base beam
properties at f02 to extract layer properties at f2 leads to very accurate results.

Wojtowicki et al. [17] addressed some of the difficulties and uncertainties associated with the boundary
condition setup for conventional Oberst beam testing. By shaking a beam at its midpoint, they took advantage
of the symmetry of the system to enforce zero slope at the center thereby allowing either half of the beam to be
modeled with clamped-free boundary conditions. In addition, they improved the accuracy of the complex
Young’s modulus measurement of the composite Oberst beam by performing curve fitting on the frequency
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Fig. 1. Storage modulus vs. frequency diagram of a base beam material.

Fig. 2. Oberst beam schematic.
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response functions (FRF) obtained by using white noise excitations. However, in order for this technique to
yield accurate results, the beam needs to be fully covered with damping material. In addition, the material
properties can only be determined near modal frequencies.

This paper proposes a modified Oberst beam technique unhindered by the above restrictions. The main
difference between the modified method and the Oberst technique is that the modified approach utilizes non-
parametric COE and LS data analysis methods rather than conventional analysis for estimating the complex
moduli of the base beam and the composite beam. Though this work presents application only to
unconstrained layer systems with one damping layer, a similar process can be applied to multi-layer
unconstrained or constrained layer systems.

In the paper, the basic Oberst beam theory is briefly introduced. The modified Oberst beam technique is
developed. Finally simulated and experimental results obtained on styrene–butadiene rubber (SBR) material
and a very soft high-damping adhesive material are presented and discussed.
2. Theory

2.1. Oberst equation and extraction of layer properties

As shown in Fig. 2, an Oberst beam system consists of one base beam and one damping layer. The base
beam provides the necessary stiffness, and the viscoelastic material layer dissipates as much vibration energy
as possible. The combined system will be referred to as the ‘‘composite beam’’ for the rest of this paper.
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The effective properties of the composite system can be determined in many ways. Oberst’s equation is
derived in Ref. [15]:

En
effI eff

En
1I1
¼ 1þ enh3

þ 3ð1þ hÞ2
enh

1þ enh
, (1)

where the complex modulus ratio e* and thickness ratio h are defined as

en ¼
En

2

En
1

; h ¼
h2

h1
. (2)

Eeff* is the effective complex modulus of the combined system, Ieff, the effective second moment of inertia,
E2*, the complex modulus of the damping layer material, E1*, the complex modulus of the base beam
material, I1, the second moment of the base beam, and h1 and h2 are the thicknesses of the base beam and
damping layer, respectively. The complex modulus E* can be written in the form of E0(1+iZ) with Z
representing the loss factor, or, alternatively, as E0+iE00 with E0 and E00 called the storage modulus (or real
modulus) and loss modulus, respectively. The cross-sectional areas of the base beam and the layer are
rectangular with the same width b. Accordingly, I1 is bh1

3/12, I2 is bh2
3/12 and Ieff is b(h1+h2)

3/12.
The Oberst beam equation can be used in reverse to obtain the complex modulus of the layer material. Let

the bending stiffness ratio a* ¼ Eeff*Ieff/(E1*I1), and rearrange Eq. (1) into a quadratic for e*:

h4
ðenÞ2 þ ð4hþ 6h2

þ 4h3
� anhÞen þ 1� an ¼ 0. (3)

Solving the above equation for e* results in

en ¼
�bnh�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbnhÞ2 � 4h4

ð1� anÞ
q

2h4
, (4)

where

bn
¼ 4þ 6hþ 4h2

þ 4h3
� an. (5)

Then the complex modulus of the layer material can be calculated:

En

2 ¼
En

1

2h3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbn
Þ
2
� 4h2

2ð1� anÞ
q

� bn

� �
. (6)

Eq. (6) is the governing equation used to obtain the complex modulus of the non-stiff layer materials in the
experiments.
2.2. Oberst beam technique

The Oberst beam analysis makes use of a cantilever beam configuration. Aluminum is the typical material
for the base beam because it can be easily machined according to test requirements. Aluminum has a very low
loss factor and its storage modulus is fairly constant over the frequency range of most interest for vibration
control, 10–2000Hz. Therefore, the complex modulus of aluminum can be considered as a constant, and this
simplifies the layer property extraction process.

The technique consists of three steps. First, modal testing is performed to determine the resonance
frequencies of the base beam, which are then used to calculate its Young’s modulus:

E1 ¼
48r1p

2L4f 2
0j

h2
1l

4
j

, (7)

where r1 is the density of the base beam, L is the cantilever length, f0j is the jth resonance frequency and lj is
the corresponding characteristic eigenvalue [18]. Second, the resonance frequencies are obtained for the
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composite beam and they are used to calculate the effective storage modulus:

E 0eff ¼
48reffp

2L4f 2
j

ðh1 þ h2Þ
2l4j

, (8)

where fj is the jth resonance frequency of the composite beam and reff is the effective density, i.e. (r1h1+r2h2)/
(h1+h2). The effective loss factor Zeff,j is estimated for the composite beam using the half-power bandwidth
method. Finally the bending stiffness ratio a* can be computed as

anTraditional ¼
r1h1 þ r2h2

r1h1

f j

f 0j

 !2

ð1þ iZeff ;jÞ (9)

and Eqs. (5) and (6) are used to compute the complex modulus of the layer material.
2.3. Modified Oberst beam technique

Though the Oberst beam method has been commonly used in practice, there are several disadvantages
associated with it: (1) the complex modulus can only be evaluated at resonance frequencies, (2) the base beam
should be fully covered with the layer material and (3) exact mathematical boundary conditions are often
difficult to mimic in the laboratory.

Moreover, an assumption has been made in using the conventional technique regarding Young’s modulus
behavior of the base beam. As shown in Eqs. (7) and (8), the Young’s modulus of the base beam is evaluated at
f0j, and the effective complex modulus is obtained at fj. If one wants to calculate the complex modulus of the
layer material at frequency fj, the modulus properties of the base beam at exactly fj should be used. Therefore,
the standard method implicitly assumes that the complex moduli of the base beam are the same or very close
at frequencies f0j and fj. This is a good assumption if the base beam material is aluminum whose Young’s
modulus does not vary much with frequency. However, as will be shown in Section 5, to improve the
estimation accuracy of the layer modulus, materials whose moduli are more frequency-dependent could be
used as the base beam material, and the above assumption can lead to large errors when the base beam
modulus varies significantly with the frequency.

A modified Oberst beam technique for evaluating damping layer material properties is proposed.
The bending stiffness of the base beam and the effective bending stiffness of the composite beam can be
determined as

En

1I1 ¼
o2r1A1

ðkn

1Þ
4
; En

eff I eff ¼
o2reffAeff

ðkn

eff Þ
4

, (10)

where k1
* and keff

* are wavenumbers for the base beam and composite beam, respectively, which are estimated
by the COE or LS method. Then the bending stiffness ratio a* is calculated as

anModified ¼
r1h1 þ r2h2

r1h1

kn

1

kn

eff

� �4

. (11)

Finally the complex modulus of the layer is obtained by using Eqs. (5) and (6).
It can be seen that the difference between the conventional technique and the modified one is the approach

to obtaining the bending stiffness ratio a*. While the conventional Oberst beam technique uses conventional
modal testing methods, the modified technique exploits the non-parametric COE and LS methods.

Since the COE and LS methods are used for estimation, the modulus-related properties can be evaluated at
any frequency. Moreover, the COE and LS methods are boundary condition independent. Therefore, the base
beam need not be completely covered by the layer, and one only needs to take measurements in the covered
area to determine the effective properties.
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2.4. Very soft material case

If the layer material is very soft relative to the base beam material, i.e., |E2*|5|E1*| or |e*|51, and the
thickness ratio h is not large, which consequently results in a small |e*|h, the Oberst equation, Eq. (1), can be
approximated as

En
effI eff

En
1I1
¼ 1þ enð3hþ 6h2

þ 4h3
Þ (12)

or

En

effI eff ¼ En

1I1 þ
3hþ 6h2

þ 4h3

h3
En

2I2. (13)

The complex modulus of the layer material can then be extracted:

En

2 ¼
ð1þ hÞ3En

eff � En
1

3hþ 6h2
þ 4h3

. (14)

Moreover, if the base-beam material has very low damping, i.e., E1* is almost real-valued, and the layer is a
very soft material with a large loss factor, an approximated simple formula can be used to estimate the
effective loss factor of the composite beam [3]:

Zeff ¼ 3hð1þ hÞ2
E 02
E1

Z2. (15)

3. Experimental setup

Fig. 3 shows the setup for the experiments. The test composite beam consists of a layer of the soft layer
material whose properties are of interest, and a stiff base beam. A function generator (Hewlett Packard
33120A) generates a source sinusoidal signal at a desired frequency. The signal is then augmented by an
amplifier (MB Dynamics SS250) and fed into a shaker (MB Dynamics PM50A), which is used to excite the test
beam. The vibration velocity wave field of the beam is measured by a Polytec PSV-200 laser vibrometer, and
delivered to the vibrometer controller as the Channel B signal. The channel A signal is a phase reference signal
that is measured by an accelerometer (PCB Piezotronics 353B17) placed on the clamp and amplified by a
signal conditioner (PCB Piezotronics 482A16). PSV-200 software is used for data acquisition. Matlab is used
to execute the Wave Coefficients algorithm to estimate the effective complex modulus of the composite beam,
and then extract the properties of the layer material.

4. Experimental results

4.1. Complex modulus of the base beam material PMMA

In the experiments, the base beam was the PMMA beam used by Liao and Wells for testing in Ref. [12].
Fig. 4 shows the complex modulus estimation results obtained by Liao and Wells using the COE and the LS
methods. Note that the wicket plot process [19–20] had been used to filter out random errors in the original
experimental data. As discussed in Ref. [12], the vibrometer system had a resonance frequency close to 350Hz,
near which the vibration velocity measurement quality was compromised. This led to the exclusion of most
data points near 350Hz after the wicket process.

Also shown in Fig. 4 is a fit curve (dashed line) based on the fractional derivative model [19] commonly used
for complex modulus of viscoelastic materials:

E1ðf Þ ¼
0:9206ð1þ i0:8866Þ þ 10:4654ð1þ 0:0275Þðif Þ0:3533

1þ 1:9285ðif Þ0:3533
ðGPaÞ. (16)
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Fig. 4. Complex modulus vs. frequency f for polymethyl methacrylate (PMMA). (a) Storage modulus E0; (b) loss factor Z. E, wave

coefficients (COE) method results; &, least squares (LS) method results. ?, fit results from Eq. (16). Near 22.5 1C.

Fig. 3. Experimental setup.

Y. Liao, V. Wells / Journal of Sound and Vibration 316 (2008) 87–100 93
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4.2. SBR layer results

Experiments were performed on a SBR sample of undisclosed composition using the modified Oberst
beam technique. SBR, also called GR-S or Buna-S, is a copolymer of styrene and butadiene and is the
most commonly used type of synthetic rubber. The base beam was the PMMA beam used for testing in
Ref. [12]. It had thickness 4.42mm, width 20mm and density 1183.6 kg/m3. The SBR layer had a thickness
of 3mm, a width of 20mm and a density of 1464.5 kg/m3. The cross sections for the base beam and layer
were both rectangular. The outer 320mm of the PMMA beam was covered by the SBR material. The
test composite beam was clamped at one end and free at the other with a cantilever length of 340mm.
The test temperature was near 22.5 1C. The system reached steady state after a waiting time of approximately
20min. The maximum amplitude of the vibration velocity of the test beam was controlled to be close to
but lower than 50mm/s. The velocity measurement resolution of the vibrometer was 3 mm/s. The sampling
frequency was 5120Hz and the frequency resolution was 0.625Hz. The data analysis utilized two
different measurement points combinations for each frequency; and each combination had 8–10 measurement
points.

First the effective complex modulus of the composite beam was estimated by using the COE method. Then
the SBR layer properties were extracted from the effective properties by using Eq. (6). The complex modulus
of the PMMA base beam was calculated from Eq. (16) (the curve-fit PMMA complex modulus expression
obtained from experimental results). Fig. 5 shows the complex modulus results of the SBR layer after the
wicket process. The storage modulus of the SBR increases from about 0.17GPa at 80Hz to 0.23GPa at
650Hz, and then drops to 0.22GPa at 850Hz. The loss factor increases from around 0.18 at 80Hz to 0.3
at 850Hz.
4.3. SBR result discussions

SBR rubber was first developed in the United States and Germany (Buna-S) during World War II when
important supplies of natural rubber were cut off. Since then, many experiments have been performed to
evaluate its viscoelastic properties.

Fletcher and Schofield [21] found that at a temperature of 20 1C the storage Young’s modulus for a Buna-S
sample was around 0.311GPa at testing frequencies 20–60Hz, with a loss factor of about 0.163. Moyal and
Fletcher [22] did further testing on two GR-S samples. One was a GR-S compound with nominally 601 Shore
hardness and the other was a GR-S natural rubber 50/50 compound of nominal hardness 501 Shore. For the
first sample, its storage Young’s modulus and loss factor were found to be about 0.216GPa and 0.208,
respectively, while for the other sample, they were around 0.120GPa and 0.137. These authors used half-
power bandwidth and logarithmic methods to determine the loss factors. The results were obtained at
frequency about 110Hz. Payne [23] gave 0.087GPa and 0.22 as reference values for the storage shear modulus
and loss factor of SBR, with no frequency specified. Since the Poisson’s ratio for SBR is very close to 0.5 [23],
the corresponding storage Young’s modulus is 0.261GPa. Mancke and Ferry [24] performed thorough testing
of cross-linked SBR, and Table 1 shows some of their measured storage shear moduli and loss factors. For
comparison purpose, the storage Young’s modulus in the table was obtained by multiplying Mancke and
Ferry’s storage shear modulus by a factor of 3 (assuming a Poisson’s ratio of 0.5). Another detailed test was
performed by Jones [5] on a SBR sample using the conventional modal testing technique and a Van Oort beam
configuration [25], i.e., two symmetrical unconstrained layers on both sides of the base beam, at 8 different
temperatures. Complex modulus information was extracted from the loss factors of the composite beam
estimated by the half-power bandwidth method, and the resonance frequency ratios between the resonance
frequencies of the base beam and those of the composite beam. Table 2 shows some of the results obtained by
Jones.

Since different SBR samples were used by the above researchers, and they were manufactured by different
companies at different times, there is a high probability that the compositions of the samples were different.
The techniques or equipment, or both, used by the researchers were also different. These all would lead to
differences in the complex modulus results.
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Table 1

Storage shear modulus, storage modulus and loss factor of very lightly cross-linked styrene-butadiene rubber (SBR) (temperature 25 1C)

by Mancke and Ferry [24]

Frequency (Hz) Storage shear modulus (GPa) Storage modulusa (GPa) Loss factor

5 0.058 0.173 0.166

16 0.066 0.198 0.145

50 0.072 0.217 0.132

159 0.081 0.244 0.126

503 0.089 0.267 0.141

1592 0.102 0.306 0.191

aThe storage Young’s modulus was calculated by multiplying the storage shear modulus by a factor of 3 since the SBR has a Poisson’s

ratio very close to 0.5.

Fig. 5. Complex modulus E vs. frequency f for styrene–butadiene rubber (SBR). (a) Storage modulus E0; (b) loss modulus E00; (c) loss

factor Z. Near 22.5 1C.

Y. Liao, V. Wells / Journal of Sound and Vibration 316 (2008) 87–100 95
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Table 2

Experimental complex modulus of styrene–butadiene rubber (SBR) by Jones [5]

Temperature (1C) f0n
a (Hz) fn

b (Hz) Zn
c Storage modulus E0 (GPa) Loss factor

14.4 126.6 118.4 0.222 0.3835 0.338

355.0 352.1 0.323 0.4577 0.464

696.2 715.4 0.206 0.6296 0.264

26.7 125.8 89.3 0.143 0.1167 0.352

352.8 263.7 0.172 0.1733 0.371

af0n, resonance frequency of the base beam.
bfn, resonance frequency of the composite beam.
cZn, loss factor of the composite beam.

Fig. 6. Complex modulus E vs. frequency f for styrene–butadiene rubber (SBR). (a) Storage modulus E0; (b) loss factor Z. E, wave

coefficients (COE) method results (near 22.5 1C); %, Mancke and Ferry’s results (at 25 1C) [24]; ’, Jones’ results (at 14.4 1C) [5];

&, Jones’ results [5] (at 26.7 1C).

Y. Liao, V. Wells / Journal of Sound and Vibration 316 (2008) 87–10096
However, the measurements show that for a general SBR, the storage Young’s modulus is between 0.1 and
0.3GPa and the loss factor falls between 0.1 and 0.4, at frequencies ranging from 5 to 1600Hz, with
temperatures around 20–25 1C.

For comparison purposes, the SBR results obtained in this work, Mancke and Ferry’s results, and Jones’
results are plotted in Fig. 6. As the figure shows, the storage modulus and loss factor results, obtained by the
COE and LS methods with the aid of unconstrained layer theories, are in those ranges. Moreover, except the
near-350Hz area the storage modulus and loss factor curves are quite smooth in the frequency range of
interest, and this is usually an indication of good measurement quality. In addition, when the frequency is
greater than 80Hz, overall the curves increase as frequency increases and this is in agreement with the patterns
shown in Tables 1 and 2.

One final note is that measurements show that the SBR sample tested in this work is undoubtedly different
from normal SBR rubbers. This sample has a density of 1464.5 kg/m3, while typical values are 930–1200 kg/m3

[23]. It is possible that the manufacturer added other materials into the raw SBR material to enhance its
performance for various applications.



ARTICLE IN PRESS
Y. Liao, V. Wells / Journal of Sound and Vibration 316 (2008) 87–100 97
5. Uncertainty analysis

5.1. Uncertainty analysis

Uncertainty analysis was performed to study the effects of experimental configurations on the complex
modulus measurement accuracy. The uncertainty analysis was based on Eq. (14), the approximation to the
exact layer modulus equation, valid for |e*h|51. In the experiments in Section 4, e*h was less than 0.05 for
the SBR measurements in the frequency range of interest. It has been confirmed by simulations that the
approximation Eq. (14) can yield quite accurate results in situations where the thickness ratio is small and
the base beam is much stiffer than the layer. Therefore, the uncertainty analysis can be carried out on Eq. (14)
without any appreciable loss of accuracy.

In the analysis, only uncertainties related to complex modulus estimation methods were examined, which
include uncertainties in the storage modulus, loss modulus and loss factor measurements.

Recall that if the result R is a function of independent variables t1, t2, t3, y, tn, i.e. R ¼ R(t1, t2, t3,y, tn),
the root sum of squares (RSS) uncertainty [26] in the result R is given as

DR ¼
qR

qt1
Dt1

� �2

þ
qR

qt2
Dt2

� �2

þ � � � þ
qR

qtn

Dtn

� �2
" #1=2

.

Following this formula, the uncertainty equations for Eq. (14) can be written as follows:

DE02 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ hÞ6ðDE0eff Þ

2
þ ðDE01Þ

2
q

3hþ 6h2
þ 4h3

(17)

and

DE002 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ hÞ6ðDE00eff Þ

2
þ ðDE001Þ

2
q

3hþ 6h2
þ 4h3

, (18)

where DE02 and DE002 are the uncertainties for the storage modulus and loss modulus of the layer, respectively.
DE0eff and DE0eff represent the uncertainties for the storage modulus and loss modulus of the composite beam,
and DE01 and DE01 are the uncertainties for the storage modulus and loss modulus of the base PMMA beam.

In terms of storage modulus and loss factor uncertainties, Eq. (18) can be rewritten as

DE002 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ hÞ6½Z2eff ðDE 0eff Þ

2
þ ðE0eff Þ

2DZ2eff � þ Z21ðDE01Þ
2
þ ðE01Þ

2DZ21

q
3hþ 6h2

þ 4h3
. (19)

For analysis purposes, if one introduces the normalized storage modulus percentage uncertainty DeNor such
that DE0 ¼ E0DeNor. Eqs. (18) and (19) can be rewritten as

DE02 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ hÞ6ðE0eff Þ

2
ðDeNor

eff Þ
2
þ ðE01Þ

2
ðDeNor

1 Þ
2

q
3hþ 6h2

þ 4h3
, (20)

DE002 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ hÞ6ðE0eff Þ

2
½Z2eff ðDeNor

eff Þ
2
þ DZ2eff � þ ðE

0
1Þ

2
½Z21ðDeNor

1 Þ
2
þ DZ21�

q
3hþ 6h2

þ 4h3
, (21)

For the uncertainty analysis, the complex modulus estimation uncertainties were assumed to be 1%
for the storage modulus and 0.005 for the loss factor; in other words, Deeff

Nor
¼ De1

Nor
¼ 0.01 and

DZeff
Nor
¼ DZ1

Nor
¼ 0.005. These are close to the actual uncertainties in experiments for the complex modulus

[12]. The analysis was then carried out as follows: first, the SBR complex modulus results were fit to second-
order polynomials to approximate the modulus properties in the frequency ranges tested. Then the effective
complex modulus of the composite beam was calculated from the Oberst equation Eq. (1), using the curve-fit
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properties and base PMMA beam properties as given by Eq. (16). Finally, the uncertainties for the layer
modulus E2 were computed by Eqs. (20) and (21).

5.2. Uncertainty analysis for SBR results

For the analysis, the SBR experimental moduli were curve-fitted by second-order polynomials, represented
by the two solid lines in Fig. 7. The two polynomials were E0 ¼ �3.38� 10�7f2+3.64� 10�4f+1.36�
10�1GPa for the storage modulus and E00 ¼ �1.09� 10�7f2+1.18� 10�4f�2.99� 10�2GPa for the loss
modulus.

Fig. 8 shows the percentage uncertainties for different thickness ratios between the layer and base beam for
the SBR layer case. The percentage uncertainty was obtained by multiplying 100 with the ratio between the
uncertainty calculated from Eq. (20) or (21) and its corresponding theoretical storage modulus or loss
modulus for the layer. The actual thickness ratio in the SBR experiments was 0.679. For this ratio, the analysis
shows the percentage uncertainty is less than 10% for the storage modulus and between 10% and 15% for the
loss modulus. This is in good agreement with the experiment results shown in Fig. 5, which appear to form
very smooth curves.

Fig. 8 shows that as the thickness ratio increases, the percentage uncertainties decrease. If the thickness ratio
is larger than one, the percentage uncertainties are both less than 8% in the frequency range of interest, which
implies good estimation quality.

5.3. Uncertainty analysis discussions

As shown in Fig. 8, the uncertainties in the storage modulus and loss modulus measurements decrease as the
thickness ratio increases. At frequencies ranging from 70 to 850Hz, when the thickness ratio increases from
0.5 to 2, the storage modulus uncertainty drops from about 10% to less than 2% and the loss modulus
uncertainty falls from around 20% to 3%.

Therefore, the uncertainty analysis shows that the estimation accuracy can be improved by increasing the
thickness ratio between the layer and base beam. It also can be achieved by selecting a base beam material with
a smaller modulus magnitude (thus, to attain more contributions from the layer material in the effective
properties). For example, the base beam can be made of polypropylene (PP), whose complex modulus
magnitude lies between 2 and 3GPa at frequencies ranging from 50 to 1000Hz near 22 1C [11], instead of
PMMA, whose complex modulus magnitude is between 4 and 5GPa in the frequency range.
Fig. 7. Complex modulus vs. frequency f for styrene-butadiene rubber (SBR). (a) Storage modulus, E0; (b) loss modulus, E00. E, wave

coefficients (COE) method results; —, second-order polynomial fit.
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Fig. 8. Percentage uncertainties vs. frequency f for styrene–butadiene rubber (SBR) with different thickness ratios. (a) In storage modulus,

DE0; (b) in loss modulus, DE00. , h2/h1 ¼ 0.5; —, h2/h1 ¼ 0.679 (ratio in experiments); , h2/h1 ¼ 1; , h2/h1 ¼ 2.

Y. Liao, V. Wells / Journal of Sound and Vibration 316 (2008) 87–100 99
6. Conclusions

In this paper, a modified Oberst beam technique is proposed to measure the complex modulus of materials
that are not stiff enough to be tested directly using beam configurations. The material can be coated on a base
beam. The complex modulus of the base beam and effective complex modulus of the composite beam are
measured using the COE and LS methods. Then the complex modulus of the layer can be extracted using layer
theories.

The modified approach has several advantages over the conventional Oberst beam technique: the layer
properties can be evaluated at any frequency, the base beam can be partially covered, and it does not require
the complex modulus of the base beam to be fairly constant around the resonance frequencies analyzed to
yield accurate results.

The method was applied to a styrene–butadiene rubber (SBR) sample that was coated on a PMMA base
beam to attain an Oberst beam configuration. The results are in good agreement with those in the literature.

Uncertainty analysis on the layer property extraction shows that the estimation accuracy can be improved
by selecting a base beam material with a small complex modulus magnitude, or increasing the thickness ratio
between the layer and base beam.
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